Identifying Runoff Generation Mechanisms and Its Controlling Parameters in the Lesser Himalayan Hillslopes
Abstract
The Himalayas, being one of the youngest and tectonically active mountains, are highly unstable and prone to natural disaster. Thus, a typical grassland (GS) of 14.42 % gradient and a mixture of fallow and forested (FF) hillslope of 23.73 % gradient are selected in an experimental watershed of the Lesser Himalayas to understand the hillslope hydrology. This work mainly focuses on analysing the influence of spatial and temporal dynamics of soil moisture on hillslope response and on identifying the dominant runoff generation mechanisms in different landuse conditions. Further, we characterize the different hydrologic conditions under which either the rainfall rate, antecedent moisture condition (AMC), or both have a significant impact on hillslope runoff. The rainfall, runoff and soil moisture data are being collected since monsoon June 2017 and five significant rainfall event results have been presented here. However, the paper will be presented with complete 2017 monsoon rainfall-runoff analyses. At FF hillslope, the rainfall of 18.47 mm and 133.14 mm occurred in 1 hr 9 min and 6 hr 24 min durations which resulted in runoff coefficient of 0.39 % and 6 %, respectively for an approximately AMC of 160 mm. Similarly, for GA hillslope, the observed runoff coefficients were 0.094 % and 1.2 % for 31.68 mm and 123.77 mm rainfall occurred in 1 hr and 6 hr 24 min duration, respectively with an AMC value of 230 mm. In an another event, the low AMC (182 mm) of GA hillslope resulted in runoff coefficient of 0.602 % for 64.68 mm rainfall occurred in 6 hr. For same AMC, the rainfall characteristics played a critical role to govern the hillslope runoff. Besides that, it was observed that the less surface resistance and higher gradient of FF hillslope generated more runoff than GA hillslope which indicates the role of topography and vegetation on hillslope runoff. During high and low rainfall magnitude, the soil moisture sensors located at lower parts of FF hillslope showed quick (3-5 min) and delayed (20-26 min) peak than the runoff hydrograph peak. Similarly, for GA hillslope the quick and delayed response were increased up to 43 min and 23 hr, respectively. It was concluded that the subsurface response of hillslope was governed by soil characteristics, topography and gradient of the hillslope.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2017
- Bibcode:
- 2017AGUFM.H41I1562N
- Keywords:
-
- 0454 Isotopic composition and chemistry;
- BIOGEOSCIENCES;
- 1804 Catchment;
- HYDROLOGY;
- 1865 Soils;
- HYDROLOGY;
- 1871 Surface water quality;
- HYDROLOGY