Landscape-based discretization for modeling of hydrological processes in the semi-arid Andes Cordillera: a case study in Morales Basin
Abstract
Improved understanding of cryosphere processes in the Subtropical Andes is essencial to secure water supply in Central Chile. An ongoing challenge is to identify the main controls on snow accumulation and ablation at multiple scales. In this study, we use the Cold Regions hydrological model (CRHM) to simulate the evolution of seasonal snow cover in the basin of the Estero Morales between the period 2000-2016. The model was forced with radiation, temperature, humidity, wind and precipitation data obtained from downscaled Era-Interim outputs. The basin was disaggregated spatially through representative hydrological processes and and geomorphological into HRU's. 22% of snow in the basin is subject to reallocation by topographic effects, while net short wave radiation would explain major changes in snowmelt. 80% of summer runoff comes from glacial melting, while temperature and soil properties are key factors controlling infiltration and contribution to the runoff at all times of the year. The model results indicate that 78.2% of precipitation corresponds to snow while 21.8% to rain. The flow rates of snowmelting are the main component in the water balance, accounting for approximately 62.8% of the total rainfall. It is important to point out that during the total period of modeling (2010-2016), it was noted that the 23.08% of the total annual flow corresponds to glacial melting, however for the period 2010 - 2015 this percentage increases to 45.3%, in spite of this were not observed variations in the volume of subsurface and groundwater flow. This suggests first: that systems such as analyzed in this article, have a great importance because they are fragile in terms of response and the ground due to its topographic features (such as slope and conductivity) is not able to store large percentages of resources until the end of the summer season; and second, to understand that mountain systems with presence of glaciers, naturally are regulated compared to sudden changes in temperatures and precipitation, investing the sources of contributions as needed. Overall, these results enabled better understanding of the hydrological cycle of the snow in the central Andes Key words: Water Storage, CRHM, Snowpack, topography effects, resdistribution.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2017
- Bibcode:
- 2017AGUFM.H41H1545V
- Keywords:
-
- 0736 Snow;
- CRYOSPHERE;
- 0740 Snowmelt;
- CRYOSPHERE;
- 1804 Catchment;
- HYDROLOGY;
- 1860 Streamflow;
- HYDROLOGY