Cumulative impoundment evaporation in water resource management within the mid-Atlantic: A case study in Virginia
Abstract
Across the eastern United States, successful management of water resources to satisfy the competing demands for human consumption, industry, agriculture, and ecosystems requires both water quality and water quantity considerations. Over the last 2 decades, low streamflows during dry summers have increased scrutiny on water supply withdrawals. Within Virginia, a statewide hydrologic model provides quantitative assessments on impacts from proposed water withdrawals to downstream river flow. Currently, evaporative losses are only accounted for from the large reservoirs. In this study, we sought to provide a baseline estimate for the cumulative evaporation from impoundments across all of the major river basins in Virginia. Virginia provides an ideal case study for the competing water demands in the mid-Atlantic region given the unique tracking of water withdrawals throughout the river corridor. In the over 73,000 Virginia impoundments, the cumulative annual impoundment evaporation was 706 MGD, or 49% of the permitted water withdrawal. The largest reservoirs (>100 acres) represented over 400 MGD, and 136 MGD for the smaller impoundments (< 5 acres). In regions with high impoundment density, impoundment evaporation tended to be a significant fraction of the total amount of water loss (evaporation + demand), with some areas where impoundment evaporation was greater than human water demand. Seasonally, our results suggest that cumulative impoundment evaporation in some watersheds greatly impacts streamflow during low flow periods. Our results demonstrate that future water supply planning will require not only understanding evaporation within large reservoirs, but also the thousands of small impoundments across the landscape.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2017
- Bibcode:
- 2017AGUFM.H41E1491S
- Keywords:
-
- 1803 Anthropogenic effects;
- HYDROLOGY;
- 1834 Human impacts;
- HYDROLOGY;
- 1836 Hydrological cycles and budgets;
- HYDROLOGY;
- 1880 Water management;
- HYDROLOGY