Evaluating the Generalization Value of Process-based Models in a Deep-in-time Machine Learning framework
Abstract
Deep Learning (DL) methods have made revolutionary strides in recent years. A core value proposition of DL is that abstract notions and patterns can be extracted purely from data, without the need for domain expertise. Process-based models (PBM), on the other hand, can be regarded as repositories of human knowledge or hypotheses about how systems function. Here, through computational examples, we argue that there is merit in integrating PBMs with DL due to the imbalance and lack of data in many situations, especially in hydrology. We trained a deep-in-time neural network, the Long Short-Term Memory (LSTM), to learn soil moisture dynamics from Soil Moisture Active Passive (SMAP) Level 3 product. We show that when PBM solutions are integrated into LSTM, the network is able to better generalize across regions. LSTM is able to better utilize PBM solutions than simpler statistical methods. Our results suggest PBMs have generalization value which should be carefully assessed and utilized. We also emphasize that when properly regularized, the deep network is robust and is of superior testing performance compared to simpler methods.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2017
- Bibcode:
- 2017AGUFM.H34F..01S
- Keywords:
-
- 3399 General or miscellaneous;
- ATMOSPHERIC PROCESSES;
- 0430 Computational methods and data processing;
- BIOGEOSCIENCES;
- 1622 Earth system modeling;
- GLOBAL CHANGE;
- 1855 Remote sensing;
- HYDROLOGY