Integrated Application of Random Forest and Artificial Neural Network Algorithms to Predict Viral Contamination in Coastal Waters
Abstract
Pathogenic viruses pose a significant public health threat and economic losses to shellfish industry in the coastal environment. Norovirus is a contagious virus and the leading cause of epidemic gastroenteritis following consumption of oysters harvested from sewage-contaminated waters. While it is challenging to detect noroviruses in coastal waters due to the lack of sensitive and routine diagnostic methods, machine learning techniques are allowing us to prevent or at least reduce the risks by developing effective predictive models. This study attempts to develop an algorithm between historical norovirus outbreak reports and environmental parameters including water temperature, solar radiation, water level, salinity, precipitation, and wind. For this purpose, the Random Forests statistical technique was utilized to select relevant environmental parameters and their various combinations with different time lags controlling the virus distribution in oyster harvesting areas along the Louisiana Coast. An Artificial Neural Networks (ANN) approach was then presented to predict the outbreaks using a final set of input variables. Finally, a sensitivity analysis was conducted to evaluate relative importance and contribution of the input variables to the model output. Findings demonstrated that the developed model was capable of reproducing historical oyster norovirus outbreaks along the Louisiana Coast with the overall accuracy of than 99.83%, demonstrating the efficacy of the model. Moreover, the increase in water temperature, solar radiation, water level, and salinity, and the decrease in wind and rainfall are associated with the reduction in the model-predicted risk of norovirus outbreak according to sensitivity analysis results. In conclusion, the presented machine learning approach provided reliable tools for predicting potential norovirus outbreaks and could be used for early detection of possible outbreaks and reduce the risk of norovirus to public health and the seafood industry.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2017
- Bibcode:
- 2017AGUFM.H33C1684S
- Keywords:
-
- 1894 Instruments and techniques: modeling;
- HYDROLOGY;
- 1914 Data mining;
- INFORMATICS;
- 1916 Data and information discovery;
- INFORMATICS;
- 1942 Machine learning;
- INFORMATICS