Climate Sensitivity to Shallow Groundwater Dynamics Inferred from Historical Groundwater Level Observations and Climate Data
Abstract
The effect of land surface processes (e.g., change in vegetation and snow cover, and change in soil moisture) on climate is well understood. However, the connection between shallow groundwater fluctuation and regional climate variability is still unresolved. This project focuses on sensitivity of climate to shallow groundwater dynamics by analyzing the impact of shallow groundwater on soil moisture and precipitation. The study use co-located measurements of daily soil moisture, depth to groundwater level (DGWL), and climate (precipitation (R) and air temperature) data. Statistical relationship between soil moisture and DGWL at different depth established. Frequency, mean and cumulative climate extremes (R90, R99, R < 1mm) examined and compared with depth to groundwater level information at Bellville station, IL. Result indicate soil moisture has a strong inverse relationship with depth to groundwater level (r -0.75) when DGWL is between 0 to 2 m (critical depth) depth from the ground. Beyond this depth, there is no statistically significant correlation or trend between soil moisture and GWL. Within this critical depth, soil moisture is more or less constant during wet days (R ≥ 1mm) even though DGWL is fluctuating. However, soil moisture decrease exponentially as DGWL declining during dry days (R < 1mm). Thus, soil moisture is highly likely dependent on groundwater feedback in the critical depth. Comparison of DGWL with frequency and cumulative of subsequent summer and fall extreme precipitation (DGWL leading by 4-7 months) indicate higher frequency and magnitude of extreme wet precipitation (Rm > 150 mm) occur when DGWL is within the critical depth. As DGWL decreases below 2 m, frequency and magnitude of extreme precipitation diminishes. On the other hand, DGWL has no significant relationship with subsequent extreme dry condition, there is no statistically significant trend between frequency of R < 1mm and DGWL. Generally, depth to groundwater level influence soil moisture within 0 to 2 m depth form the ground. Groundwater level close to the ground (0 - 2 m) seems likely influence subsequent extreme wet condition while not conclusive is the influence of declining groundwater level (beyond 2 m) to subsequent dry conditions. The result support the broad hypothesis that shallow groundwater can influence climate.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2017
- Bibcode:
- 2017AGUFM.H33B1681S
- Keywords:
-
- 3307 Boundary layer processes;
- ATMOSPHERIC PROCESSES;
- 3322 Land/atmosphere interactions;
- ATMOSPHERIC PROCESSES;
- 1840 Hydrometeorology;
- HYDROLOGY;
- 1895 Instruments and techniques: monitoring;
- HYDROLOGY