Accuracy Analysis and Parameters Optimization in Urban Flood Simulation by PEST Model
Abstract
The risk of urban flooding has been increasing due to heavy rainfall, flash flooding and rapid urbanization. Rainwater pumping stations, underground reservoirs are used to actively take measures against flooding, however, flood damage from lowlands continues to occur. Inundation in urban areas has resulted in overflow of sewer. Therefore, it is important to implement a network system that is intricately entangled within a city, similar to the actual physical situation and accurate terrain due to the effects on buildings and roads for accurate two-dimensional flood analysis. The purpose of this study is to propose an optimal scenario construction procedure watershed partitioning and parameterization for urban runoff analysis and pipe network analysis, and to increase the accuracy of flooded area prediction through coupled model. The establishment of optimal scenario procedure was verified by applying it to actual drainage in Seoul. In this study, optimization was performed by using four parameters such as Manning's roughness coefficient for conduits, watershed width, Manning's roughness coefficient for impervious area, Manning's roughness coefficient for pervious area. The calibration range of the parameters was determined using the SWMM manual and the ranges used in the previous studies, and the parameters were estimated using the automatic calibration method PEST. The correlation coefficient showed a high correlation coefficient for the scenarios using PEST. The RPE and RMSE also showed high accuracy for the scenarios using PEST. In the case of RPE, error was in the range of 13.9-28.9% in the no-parameter estimation scenarios, but in the scenario using the PEST, the error range was reduced to 6.8-25.7%. Based on the results of this study, it can be concluded that more accurate flood analysis is possible when the optimum scenario is selected by determining the appropriate reference conduit for future urban flooding analysis and if the results is applied to various rainfall event scenarios and parameter optimization. Keywords: Parameters Optimization; PEST model; Urban area Acknowledgement This research was supported by a grant (17AWMP-B079625-04) from Water Management Research Program funded by Ministry of Land, Infrastructure and Transport of Korean government.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2017
- Bibcode:
- 2017AGUFM.H31A1491K
- Keywords:
-
- 1817 Extreme events;
- HYDROLOGY;
- 1821 Floods;
- HYDROLOGY;
- 4321 Climate impact;
- NATURAL HAZARDS;
- 4343 Preparedness and planning;
- NATURAL HAZARDS