Accounting for Ecohydrologic Separation Alters Interpreted Catchment Hydrology
Abstract
Recent studies have demonstrated that in in some catchments, compartmentalized pools of water supply either plant transpiration (poorly mobile water) or streamflow and groundwater (highly mobile water), a phenomenon referred to as ecohydrologic separation. Although the literature has acknowledged that omission of ecohydrologic separation in hydrological models may influence estimates of residence times of water and solutes, no study has investigated how and when this compartmentalization might alter interpretations of fluxes and storages within a catchment. In this study, we develop two hydrochemical lumped rainfall-runoff models, one which incorporates ecohydrologic separation and one which does not for a watershed at the H.J. Andrews Experimental Forest (Oregon, USA), the study site where ecohydrologic separation was first observed. The models are calibrated against stream discharge, as well as stream chloride concentration. The objectives of this study are (1) to compare calibrated parameters and identifiability across models, (2) to determine how and when compartmentalization of water in the vadose zone might alter interpretations of fluxes and stores within the catchment, and (3) to identify how and when these changes alter residence times. Preliminary results suggest that compartmentalization of the vadose zone alters interpretations of fluxes and storages in the catchment and improves our ability to simulate solute transport.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2017
- Bibcode:
- 2017AGUFM.H23H1775C
- Keywords:
-
- 0414 Biogeochemical cycles;
- processes;
- and modeling;
- BIOGEOSCIENCES;
- 1625 Geomorphology and weathering;
- GLOBAL CHANGE;
- 1813 Eco-hydrology;
- HYDROLOGY;
- 1824 Geomorphology: general;
- HYDROLOGY