3D numerical modeling of hyporheic exchange processes in fractal riverbed
Abstract
The subsurface region receiving stream water is known as the hyporheic zone and the flow of water in and out of this zone is called hyporheic exchange. The hyporheic zone is populated by biofilms and is a hotspot for nutrient uptake and contaminant transformation. Traditionally, pumping models predicting the head distribution over the riverbed boundary are used to obtain the velocity field in the subsurface. However, past research has largely overlooked the nonlinearity of the turbulent flow above the bumpy riverbed.
The main objective of this research is to investigate the effect of spatial and temporal heterogeneity created by turbulent flow on hyporheic exchange and residence time distribution in fractal channel beds. The 3-D fractal riverbed is created from the power spectrum. Large-Eddy Simulation is used to provide the pressure field over the benthic boundary. Finally, Darcian fluxes in the sub-surface are calculated and hyporheic travel times computed using random walks. Surface and subsurface transport processes are represented explicitly and can be studied in detail. Our results suggest that (1) Eddies and wakes around the dunes force the exchange (2) The bigger the dunes, the greater the influence of turbulence (3) Turbulence induces more exchange than pumping predicts.- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2017
- Bibcode:
- 2017AGUFM.H23D1723L
- Keywords:
-
- 0414 Biogeochemical cycles;
- processes;
- and modeling;
- BIOGEOSCIENCES;
- 0496 Water quality;
- BIOGEOSCIENCES;
- 1830 Groundwater/surface water interaction;
- HYDROLOGY;
- 1839 Hydrologic scaling;
- HYDROLOGY