Understanding the Alteration of Bentonite Backfill Using Coupled THMC Modeling for a Long Term Heater Test at the Grimsel Underground Research Lab
Abstract
Compacted bentonite is commonly used as backfill material in emplacement tunnels of nuclear waste repositories because of its low permeability, high swelling pressure, and retardation capacity of radionuclide. To assess whether this backfill material can maintain these favorable features when undergoing heating from the waste package and hydration from the host rock, we need a thorough understanding of the thermal, hydrological, mechanical, and chemical evolution of bentonite under disposal conditions. Dedicated field tests integrated with THMC modeling provide an effective way to deepen such understanding. Here, we present coupled THMC models for an in situ heater test which was conducted at the Grimsel Test Site in Switzerland for 18 years. The comprehensive monitoring data obtained in the test provide a unique opportunity to evaluate bentonite integrity and test coupled THMC models. We developed a modeling strategy where conceptual model complexity is increased gradually by adding/testing processes such as Non-Darcian flow, enhanced vapor diffusion, thermal osmosis and different constitutive relationships for permeability/porosity changes due to swelling. The final THMC model explains well all the THM data and the concentration profiles of conservative chemical species. Over the course of modeling the in situ test, we learned that (1) including Non-Darcian flow into the model leads to a significant underestimation of hydration rate of bentonite, (2) chemical data provide an important additional piece of information for calibrating a THM model; (3) key processes needed to reproduce the data include vapor diffusion, as well as porosity and permeability changes due to swelling and thermal osmosis; (4) the concentration profiles of cations (calcium, potassium, magnesium and sodium) were largely shaped by transport processes despite their concentration levels being affected by mineral dissolution/precipitation and cation exchange. The concentration profiles of pH, bicarbonate and sulphate were largely determined by chemical reactions. These findings enable more reliable calculation of the time frame and condition of the early unsaturated phase in bentonite, the porosity and permeability after the bentonite becomes fully saturated, and how transport processes interact with reactions.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2017
- Bibcode:
- 2017AGUFM.H23A1632B
- Keywords:
-
- 1822 Geomechanics;
- HYDROLOGY;
- 1847 Modeling;
- HYDROLOGY;
- 1858 Rocks: chemical properties;
- HYDROLOGY;
- 1895 Instruments and techniques: monitoring;
- HYDROLOGY