A Dual-Continuum Model for Brine Migration in Salt Associated with Heat-Generating Nuclear Waste: Fully Coupled Thermal-Hydro-Mechanical Analysis
Abstract
The disposal of heat-generating nuclear waste in salt host rock establishes a thermal gradient around the waste package that may cause brine inclusions in the salt grains to migrate toward the waste package. In this study, a dual-continuum model is developed to analyze such a phenomenon. This model is based on the Finite Volume Method (FVM), and it is fully thermal-hydro-mechanical (THM) coupled. For fluid flow, the dual-continuum model considers flow in the interconnected pore space and also in the salt grains. The mass balance of salt and water in these two continua is separately established, and their coupling is represented by flux associated with brine migration. Together with energy balance, such a system produces a coupled TH model with strongly nonlinear features. For mechanical analysis, a new formulation is developed based on the Voronoi tessellated mesh. By relating each cell to several connected triangles, first-order approximation is constructed. The coupling between thermal and mechanical fields is only considered in terms of thermal expansion. And the coupling between the hydraulic and mechanical fields in terms of pore-volume effects is consistent with Biot's theory. Therefore, a fully coupled THM model is developed. Several demonstration examples are provided to verify the model. Last the new model is applied to analyze coupled THM behavior and the results are compared with experimental data.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2017
- Bibcode:
- 2017AGUFM.H23A1619H
- Keywords:
-
- 1822 Geomechanics;
- HYDROLOGY;
- 1847 Modeling;
- HYDROLOGY;
- 1858 Rocks: chemical properties;
- HYDROLOGY;
- 1895 Instruments and techniques: monitoring;
- HYDROLOGY