Quantifying water storage anomaly in the 2009/10 drought across North China
Abstract
Global climate change is expected to have widespread impacts on the terrestrial hydrological cycle, leading to a variety of extreme disasters such as flood and drought. Drought occurs frequently in North China and it ranks the most damaging disaster in this region due to its large-scale impact on hydrology and ecosystem. Quantifying water deficit in drought is beneficial for water management including water transfer from other basins (e.g., the South-to-North Water Diversion (SNWD) project). During 2009/2010, a mega drought swept across the North China, causing a serious water deficit in industry and agriculture as well as restrictions on vegetation growth. However, little is known about the regime of water deficit during this drought at regional scale. In this study, we attempt to detect the water storage changes in response to the 2009/10 drought event. Satellite remote-sensing data from the Gravity Recovery and Climate Experiment (GRACE) were used and validated with ground measurements and land surface modeling data. As comparing with different land surface modeling data sets, the results indicate that GRACE can successfully capture the temporal variation of total water storage. The total water storage shows decline trend, and it reaches the low point during the 2009/10 drought with water storage deficit up to 25 km3 ( 22 mm). The groundwater storage shows similar pattern with the trend of -4.68 mm/yr estimated by GRACE data, while the Hai River (HR) basin has a larger trend of -14.8 mm/yr and a less trend of -1.29 mm/yr over the Liao River (LR) basin. Therefore this drought event has led to damaging hydrological effects in North China. To ease this situation, water management practice, such as the SNWD project, should make relevant response to this level of drought.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2017
- Bibcode:
- 2017AGUFM.H21F1536Z
- Keywords:
-
- 1812 Drought;
- HYDROLOGY;
- 1817 Extreme events;
- HYDROLOGY;
- 1840 Hydrometeorology;
- HYDROLOGY;
- 1880 Water management;
- HYDROLOGY