Towards Large-area Field-scale Operational Evapotranspiration for Water Use Mapping
Abstract
Field-scale evapotranspiration (ET) estimates are needed for improving surface and groundwater use and water budget studies. Ideally, field-scale ET estimates would be at regional to national levels and cover long time periods. As a result of large data storage and computational requirements associated with processing field-scale satellite imagery such as Landsat, numerous challenges remain to develop operational ET estimates over large areas for detailed water use and availability studies. However, the combination of new science, data availability, and cloud computing technology is enabling unprecedented capabilities for ET mapping. To demonstrate this capability, we used Google's Earth Engine cloud computing platform to create nationwide annual ET estimates with 30-meter resolution Landsat ( 16,000 images) and gridded weather data using the Operational Simplified Surface Energy Balance (SSEBop) model in support of the National Water Census, a USGS research program designed to build decision support capacity for water management agencies and other natural resource managers. By leveraging Google's Earth Engine Application Programming Interface (API) and developing software in a collaborative, open-platform environment, we rapidly advance from research towards applications for large-area field-scale ET mapping. Cloud computing of the Landsat image archive combined with other satellite, climate, and weather data, is creating never imagined opportunities for assessing ET model behavior and uncertainty, and ultimately providing the ability for more robust operational monitoring and assessment of water use at field-scales.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2017
- Bibcode:
- 2017AGUFM.H13F1461S
- Keywords:
-
- 1622 Earth system modeling;
- GLOBAL CHANGE;
- 1804 Catchment;
- HYDROLOGY;
- 1813 Eco-hydrology;
- HYDROLOGY;
- 1818 Evapotranspiration;
- HYDROLOGY