The spatiotemporal variation in evapotranspiration of terrestrial ecosystems in China between 1982-2015
Abstract
Evapotranspiration (ET) is one of the most important fluxes in the terrestrial ecosystem, and play a vital role in regulating atmosphere-hydrosphere-biosphere interaction. Several studies have suggested that global ET has significantly increased in the past several decades, and that such increase has exhibited big spatial variability, but there are few detailed studies on the spatio-temporal change in ET over China. Combining remote-sensing and ground-based observations with a machine learning approach (model tree ensemble, MTE), this study investigate the spatiotemporal variation in ET in China during 1982 and 2015. Our results showed that mean annual ET in China is 552±14mm year-1, which is within range of estimates by previous studies (from 430 mm year-1 to 555 mm year-1). ET spatially decreases from southeast to northwest, with highest value appeared in humidity regions (more than 1400 mm year-1) and lowest value in arid regions (less than 200 mm year-1). Over the past three decades, ET in China significantly increased by 1.07 mm year-2 with remarkable spatial heterogeneity. The largest increase in ET appears in the eastern periphery of SiChuan Basin, which may be related to increase in temperature, solar radiation as well as enhancing vegetation productivity. Only 20% of study area show decrease in ET, which is mainly located in parts of the southeast, southwest and northeast of China. The regional decrease in ET is likely to be contributed by decrease in solar radiation and relative humidity. Although our finding of the significant increase in China's ET at the country scale is supported by five different ET products, there are still less agreement on the change in ET at the regional scale among different ET products.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2017
- Bibcode:
- 2017AGUFM.H13F1450L
- Keywords:
-
- 1622 Earth system modeling;
- GLOBAL CHANGE;
- 1804 Catchment;
- HYDROLOGY;
- 1813 Eco-hydrology;
- HYDROLOGY;
- 1818 Evapotranspiration;
- HYDROLOGY