Improving Alpine Streamflow Simulations by Incorporation of Evapotranspiration and Soil Moisture Data
Abstract
Over the last decade autocalibration routines have become commonplace in watershed modeling. This approach is most often used to simulate a streamflow at a basin's outlet. In alpine settings spring/early summer snowmelt is by far the dominant signal in this system. Therefore, there is great potential for a modeled watershed to underperform during other times of the year. This tendency has been noted in many prior studies. In this work, the Soil and Water Assessment Tool (SWAT) model was autocalibrated with the SUFI-2 routine. Two mountainous watersheds from Idaho and Utah were examined. In this study, the basins were calibrated on a monthly satellite based on the MODIS 16A2 product. The gridded MODIS product was ideally suited to derive an estimate of ET on a subbasin basis. Soil moisture data was derived from extrapolation of in situ sites from the SNOwpack TELemetry (SNOTEL) network. Previous work has indicated that in situ soil moisture can be applied to derive an estimate at a significant distance (>30 km) away from the in situ site. Optimized ET and soil moisture parameter values were then applied to streamflow simulations. Preliminary results indicate improved streamflow performance both during calibration (2005-2011) and validation (2012-2014) periods. Streamflow performance was monitored with not only standard objective metrics (bias and Nash Sutcliffe coefficients) but also improved baseflow accuracy, demonstrating the utility of this approach in improving watershed modeling fidelity outside the main snowmelt season.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2017
- Bibcode:
- 2017AGUFM.H13F1448T
- Keywords:
-
- 1622 Earth system modeling;
- GLOBAL CHANGE;
- 1804 Catchment;
- HYDROLOGY;
- 1813 Eco-hydrology;
- HYDROLOGY;
- 1818 Evapotranspiration;
- HYDROLOGY