Infusion of SMAP Data into Offline and Coupled Models: Evaluation, Calibration, and Assimilation
Abstract
The impact of the land surface on the water and energy cycle is modulated by its coupling to the planetary boundary layer (PBL), and begins at the local scale. A core component of the local land-atmosphere coupling (LoCo) effort requires understanding the `links in the chain' between soil moisture and precipitation, most notably through surface heat fluxes and PBL evolution. To date, broader (i.e. global) application of LoCo diagnostics has been limited by observational data requirements of the coupled system (and in particular, soil moisture) that are typically only met during localized, short-term field campaigns. SMAP offers, for the first time, the ability to map high quality, near-surface soil moisture globally every few days at a spatial resolution comparable to current modeling efforts. As a result, there are numerous potential avenues for SMAP model-data fusion that can be explored in the context of improving understanding of L-A interaction and NWP. In this study, we assess multiple points of intersection of SMAP products with offline and coupled models and evaluate impacts using process-level diagnostics. Results will inform upon the importance of high-resolution soil moisture mapping for improved coupled prediction and model development, as well as reconciling differences in modeled, retrieved, and measured soil moisture. Specifically, NASA model (LIS, NU-WRF) and observation (SMAP, NLDAS-2) products are combined with in-situ standard and IOP measurements (soil moisture, flux, and radiosonde) over the ARM-SGP. An array of land surface model spinups (via LIS-Noah) are performed with varying atmospheric forcing, greenness fraction, and soil layering permutations. Calibration of LIS-Noah soil hydraulic parameters is then performed using an array of in-situ soil moisture and flux and SMAP products. In addition, SMAP assimilation is performed in LIS-Noah both at the scale of the observation (36 and 9km) and the model grid (1km). The focus is on the consistency in calibrated parameters, impact of soil drydown dynamics and soil layers, and terrestrial (soil moisture-flux) coupling. The impacts of these various spinup runs and initialization of NU-WRF coupled forecasts then follows with a focus on weather (ambient, PBL, and precipitation) using LoCo metrics.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2017
- Bibcode:
- 2017AGUFM.H12G..06L
- Keywords:
-
- 1833 Hydroclimatology;
- HYDROLOGY;
- 1843 Land/atmosphere interactions;
- HYDROLOGY;
- 1855 Remote sensing;
- HYDROLOGY;
- 1866 Soil moisture;
- HYDROLOGY