Monitoring carbonate dissolution using spatially resolved under-sampled NMR propagators and MRI
Abstract
The dissolution of a porous rock matrix by an acidic flow causes a change in the pore structure and consequently the pattern of fluid flow and rock permeability. This process is relevant to many areas of practical relevance such as enhanced oil recovery, water contaminant migration and sequestration of supercritical CO2. The most important governing factors for the type of change in the pore space are related by the Péclet (Pe) and Damköhler (Da) dimensionless numbers; these compare the transport properties of the fluid in the porous medium with the reactive properties of the solid matrix and the incident fluid respectively. Variation in Pe and Da can cause very different evolution regimes of the pore space and flow can occur, ranging from a uniform dissolution through different "wormholing" regimes (shown on the left hand side of figure 1) to face dissolution. NMR has a unique capability of measuring both the flow and structural changes during such dissolution whilst the characteristics of flow in the highly heterogeneous matrix that is formed can be predicted by the CTRW modelling approach. Here, NMR measurements of displacement probability distributions, or propagators, have been used to monitor the evolution of fluid flow during a reactive dissolution rock core floods. Developments in the NMR method by undersampling the acquisition data enable spatially resolved measurements of the propagators to be done at sufficient displacement resolution and in a timescale that is short enough to capture the changes in structure and flow. The highly under-sampled (4%) data, which typically reduces the acquisition time from 2 hours to 6 minutes, has been shown to produce equivalent propagator results to the fully sampled experiment. Combining these propagator measurements with quantitative and fast imaging techniques a full time-resolved picture of the dissolution reaction is built up. Experiments have been done for both Ketton and Estaillades carbonate rock cores, which exhibit very different dissolution behaviours, and for which experiments and model comparisons will be shown.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2017
- Bibcode:
- 2017AGUFM.H12A..04S
- Keywords:
-
- 1009 Geochemical modeling;
- GEOCHEMISTRY;
- 1805 Computational hydrology;
- HYDROLOGY;
- 1829 Groundwater hydrology;
- HYDROLOGY;
- 1832 Groundwater transport;
- HYDROLOGY