Flux-based Enrichment Ratios of Throughfall and Stemflow Found to Vary Significantly within Urban Fragments and Along an Urban-to-Rural Gradient
Abstract
Throughfall and stemflow are important inputs of water and solutes to forest soils in both rural and urban forests. In metropolitan wooded ecosystems, a number of factors can affect flux-based enrichment ratios, including combustion of fossil fuels and proximity to industry. Use of flux-based enrichment ratios provides a means by which this modification of net precipitation chemistry can be quantified for both throughfall and stemflow, and allows for a characterization of the relative contributions of stemflow and throughfall in the delivery of nutrients and pollutants to forest soils. This study utilizes five mixed deciduous forest stands along an urban-to-rural gradient (3 urban fragments, 1 suburban fragment, and a portion of 1 contiguous rural forest) within a medium-sized metropolitan region of the United States' Northeast megalopolis, to determine how the size, shape, structure, and geographic context of remnant forest fragments determine hydrologic and solute fluxes within them. In situ observations of throughfall and stemflow (the latter of which is limited to Quercus rubra and Quercus alba) within each study plot allow for an identification and characterization of the spatial variability in solute fluxes within and between the respective sites. Preliminary observations indicate significant intra-site variability in solute concentrations as observed in both throughfall and stemflow, with higher concentrations along the respective windward edges of the study plots than at greater depths into their interiors. Higher flux-based stemflow enrichment ratios, for both Q. rubra and Q. alba, were also evident for certain ions (i.e., S2-, NO3-) in the urban forest fragments, with significantly lower ratios observed at the suburban and rural sites. Findings from this research are intended to aid in quantifying the spatial variability of the hydrologic and hydrochemical ecosystem service provisions of remnant metropolitan forest fragments. This research is supported in part by National Science Foundation grant Reference Number BCS-1459116.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2017
- Bibcode:
- 2017AGUFM.H11D1201D
- Keywords:
-
- 0439 Ecosystems;
- structure and dynamics;
- BIOGEOSCIENCES;
- 0454 Isotopic composition and chemistry;
- BIOGEOSCIENCES;
- 1813 Eco-hydrology;
- HYDROLOGY;
- 1843 Land/atmosphere interactions;
- HYDROLOGY