Estimating groundwater discharge into the ocean in the Yucatán Peninsula
Abstract
The Yucatán peninsula is an emerged flat carbonate block abundant in soluble rocks. High permeability and dissolution of the rock, facilitates the development of channels, sinkholes and caves where underground rivers discharge into the ocean. There are no rivers or streams acting as a surface drainage system, all rainfall water entering the peninsula is discharged either as evapotranspiration (ET) or as underground runoff into the ocean. To date there are no estimates of the total groundwater discharge from the peninsula into the sea, and of the spatial distribution of recharge and discharge areas thereby hindering efforts to understand the dynamics of a complex hydrologic system. In this study, we estimate the discharge (Q) by solving the water balance equation (ΔS=PPT-ET-Q) using remote sensing products over a period of 12 years; the change in storage (ΔS) was retrieved from the satellite GRACE; precipitation (PPT) from the Tropical Rainfall Measuring Mission; and evapotranspiration (ET) from the Moderate Resolution Imaging Spectroradiometer. Results show that freshwater discharge via evapotranspiration can be a significant portion of the water budget depending on the climatic conditions throughout the year. We observe high recharge-discharge inter-annual variability in the center of the peninsula and some clearly defined recharge and discharge zones around the perimeter. On average the dryer north-east and wetter north-western parts of the peninsula act as recharge zones (where the influx of water is higher than the outflow), while the central-northern part of the peninsula corresponding to agricultural lands, acts as a discharge zone (outflow is higher than influx). The most southern region of the peninsula and the western mangroves are always discharge zones. Finally, our analyses reveal a number of highly subsidized zones, where precipitation levels are consistently lower than evapotranspiration, hence indicating the presence of groundwater dependent ecosystems that normally act as recharge zones.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2017
- Bibcode:
- 2017AGUFM.H11B1166A
- Keywords:
-
- 1829 Groundwater hydrology;
- HYDROLOGY;
- 1855 Remote sensing;
- HYDROLOGY;
- 1873 Uncertainty assessment;
- HYDROLOGY;
- 1876 Water budgets;
- HYDROLOGY