Shear-strain energy rate distribution caused by the interplate locking along the Nankai Trough, southwest Japan: An integration analysis using stress tensor inversion and slip deficit inversion
Abstract
In the Nankai Trough, southwest Japan, the Philippine Sea Plate descends beneath the Eurasian plate. The locking, or the slip deficit, on the plate interface causes stress fluctuation in the inland area. The interplate locking does not always result in stress accumulation but also causes stress release. The stress increase/decrease is not determined only from the stress fluctuation but also depends on the background stress, in particular, its orientation. This study proposes a method to estimate the shear-strain energy increase/decrease distribution caused by the interplate locking. We at first investigated the background stress field in and around the Nankai Trough. The spatial distribution of the principal stress orientations and the stress ratio were estimated by analysis of 130,000 focal mechanisms of small earthquakes (e.g., Yoshida et al. 2015 Tectonophysics). For example, in an area called Chugoku region, the maximum and minimum compression axes were E-W and N-S directions, respectively. We also estimated the slip-deficit rate at the plate interface by analyzing GNSS data and calculated the stress fluctuation due to the deficit (e.g., Noda et al. 2013 GJI). The interplate locking causes the maximum compression in the direction of plate convergence. This is significantly different from the orientations of the background stress characterized by the E-W compressional strike-slip stress regime.. By combining the results of the background stress and the stress fluctuation, we made a map indicating the shear-strain energy change due to the interplate locking. In the Chugoku region, the shear-strain energy decreases due to the interplate locking. This is because the N-S compressional stress caused by the interplate locking compensates the N-S extensional stress in the background. The shear-strain energy increases in some parts of the analyzed areas. By statistically comparing the shear strain energy rate with the seismicity in the inland area, we found that the seismicity tends to be high where the interplate locking increases the shear-strain energy. Our results suggest that the stress fluctuation due to the interplate locking is not dominant in the background stress but surely contributes to the inland seismicity in southwest Japan.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2017
- Bibcode:
- 2017AGUFM.G43B0939S
- Keywords:
-
- 1240 Satellite geodesy: results;
- GEODESY AND GRAVITY;
- 3040 Plate tectonics;
- MARINE GEOLOGY AND GEOPHYSICS;
- 8002 Continental neotectonics;
- STRUCTURAL GEOLOGY;
- 8158 Plate motions: present and recent;
- TECTONOPHYSICS