Evaluating controls on snow distribution in the eastern Chugach Mountains, Alaska
Abstract
A detailed understanding of the spatial and temporal variability of alpine snow depth is important because of its strong influence on water resources, regional economies, and public safety. However, in complex terrain, strong orographic gradients and complicated topography-influenced wind fields produce complex accumulation patterns that are difficult to accurately quantify using traditional in situ and satellite-based approaches, and are challenging to model. In this study, we use repeat airborne photogrammetry, Structure from Motion (SfM) processing methods, and field-based measurements to produce continuous and accurate maps of end-of-winter snow depth and snow water equivalence (SWE) in the eastern Chugach Mountains, Alaska, during the period 2015-2017. We validate photogrammetry-derived snow depth maps using simultaneously acquired snow depth measurements recorded by project and citizen scientists. Patterns of snow distribution in the study area are largely controlled by orographic forcing, however, these patterns are strongly modulated by persistent synoptic weather systems that serve to weaken the climatological snow distribution pattern.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2017
- Bibcode:
- 2017AGUFM.C53B1031W
- Keywords:
-
- 0736 Snow;
- CRYOSPHERE;
- 0740 Snowmelt;
- CRYOSPHERE;
- 0758 Remote sensing;
- CRYOSPHERE;
- 1863 Snow and ice;
- HYDROLOGY