A 25-year Record of Antarctic Ice Sheet Elevation and Mass Change
Abstract
Since 1992, the European Remote-Sensing (ERS-1 and ERS-2), ENVISAT, and CryoSat-2 satellite radar altimeters have measured the Antarctic ice sheet surface elevation, repeatedly, at approximately monthly intervals. These data constitute the longest continuous record of ice sheet wide change. In this paper, we use these observations to determine changes in the elevation, volume and mass of the East Antarctic and West Antarctic ice sheets, and of parts of the Antarctic Peninsula ice sheet, over a 25-year period. The root mean square difference between elevation rates computed from our survey and 257,296 estimates determined from airborne laser measurements is 54 cm/yr. The longevity of the satellite altimeter data record allows to identify and chart the evolution of changes associated with meteorology and ice flow, and we estimate that 3.6 % of the continental ice sheet, and 21.7 % of West Antarctica, is in a state of dynamical imbalance. Based on this partitioning, we estimate the mass balance of the East and West Antarctic ice sheet drainage basins and the root mean square difference between these and independent estimates derived from satellite gravimetry is less than 5 Gt yr-1.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2017
- Bibcode:
- 2017AGUFM.C51A0962S
- Keywords:
-
- 0758 Remote sensing;
- CRYOSPHERE;
- 0799 General or miscellaneous;
- CRYOSPHERE;
- 1240 Satellite geodesy: results;
- GEODESY AND GRAVITY;
- 1241 Satellite geodesy: technical issues;
- GEODESY AND GRAVITY