Impact of Basal Hydrology Near Grounding Lines: Results from the MISMIP-3D and MISMIP+ Experiments Using the Community Ice Sheet Model
Abstract
Ice sheets and ice shelves are linked by the transition zone, the region where the grounded ice lifts off the bedrock and begins to float. Adequate resolution of the transition zone is necessary for numerically accurate ice sheet-ice shelf simulations. In previous work we have shown that by using a simple parameterization of the basal hydrology, a smoother transition in basal water pressure between floating and grounded ice improves the numerical accuracy of a one-dimensional vertically integrated fixed-grid model. We used a set of experiments based on the Marine Ice Sheet Model Intercomparison Project (MISMIP) to show that reliable grounding-line dynamics at resolutions 1 km is achievable. In this presentation we use the Community Ice Sheet Model (CISM) to demonstrate how the representation of basal lubrication impacts three-dimensional models using the MISMIP-3D and MISMIP+ experiments. To this end we will compare three different Stokes approximations: the Shallow Shelf Approximation (SSA), a depth-integrated higher-order approximation, and the Blatter-Pattyn model. The results from our one-dimensional model carry over to the 3-D models; a resolution of 1 km (and in some cases 2 km) remains sufficient to accurately simulate grounding-line dynamics.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2017
- Bibcode:
- 2017AGUFM.C41C1245L
- Keywords:
-
- 0720 Glaciers;
- CRYOSPHERE;
- 0726 Ice sheets;
- CRYOSPHERE;
- 0774 Dynamics;
- CRYOSPHERE;
- 0798 Modeling;
- CRYOSPHERE