Broadband acoustic wave propagation across sloping topography covered by sea ice
Abstract
The Canada Basin Acoustic Propagation Experiment (CANAPE) quantifies how sound generated in the deep Basin is received on the continental shelf. The two regimes, deep basin and shallow shelves, are separated by a 30-km wide region where the bottom changes from 1000-m to 100-m. This narrow region focuses and traps kinetic energy that surface wind forcing inputs into the ocean over a wide region with periodicities of days to months. As a result, ocean temperature and speed of sound are more variable near sloping topography than they are over either deep basins or shallow shelves. In contrast to companion CANAPE presentations in this session, here we use sound speed as input to predict likely propagation paths and transmission losses across the continental slope with a two-dimensional parabolic model (2D PE). Intensity fluctuations due to the changing bathymetry, water column oceanography, and the scattering from ice cover for broadband signals are checked against measured broadband acoustic signals that were collected simultaneously with the oceanographic measurements for a long period. Differences between measured and calculated transmission loss can be the result of out of plane acoustic paths requiring 3D PE modeling for future studies. [Work supported by ONR code 322 OA].
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2017
- Bibcode:
- 2017AGUFM.C33B1199B
- Keywords:
-
- 3349 Polar meteorology;
- ATMOSPHERIC PROCESSES;
- 0750 Sea ice;
- CRYOSPHERE;
- 1621 Cryospheric change;
- GLOBAL CHANGE;
- 4540 Ice mechanics and air/sea/ice exchange processes;
- OCEANOGRAPHY: PHYSICAL