Accommodating permafrost in contaminant transport modeling, a preliminary approach to modify the TREECS modeling tools
Abstract
Efforts are underway to adapt TREECS (Training Range Environmental Evaluation and Characterization System) for use in arctic or subarctic conditions where the extent and duration of snowpack and frozen ground may influence the development and concentration of contaminant plumes. TREECS is a multi-media model designed to aid facility managers in the long term stewardship of Army properties. TREECS includes sub-models for mass loading, soil, vadose zone, aquifer, and stream transport. Potential changes to the sub-models to improve the ability to model contaminant transport in areas with permafrost include accurately representing the dissolution of contaminants over a wider range of temperatures, estimating snow depth and ablation for both the hydrology and thermal conditions, determining ground freeze/thaw state and an average active layer depth, a more precise method to estimate a vertical transport time to a water table, and a soil interflow routine that adapts for permafrost condition. In this presentation we will show three sub-model comparisons 1) the use of the National Weather Service SNOW-17 model and the current TREECS snowmelt routines for input hydrology, 2) a Continuous Frozen Ground Index (CFGI) model and the Geophysical Institute Permafrost Lab model (GIPL 1.0) for determining active layer depth and summer season length, and 3) the use of HYDRUS-1D and the current TREECS vadose zone model for transport to the water table. The performance vs input needs, assumptions, and limitations of each approach, as well as the physical system uncertainties will also be discussed.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2017
- Bibcode:
- 2017AGUFM.C21A1103R
- Keywords:
-
- 0702 Permafrost;
- CRYOSPHERE;
- 1621 Cryospheric change;
- GLOBAL CHANGE;
- 1829 Groundwater hydrology;
- HYDROLOGY;
- 1875 Vadose zone;
- HYDROLOGY