Forest Fires Darken Snow for Years following Disturbance: Magnitude, Duration, and Composition of Light Absorbing Impurities in Seasonal Snow across a Chronosequence of Burned Forests in the Colorado River Headwaters
Abstract
Charred forests shed black carbon and burned debris, which accumulates and concentrates on winter snowpack, reducing snow surface albedo, and subsequently increasing snowmelt rates, and advancing the date of snow disappearance. Forest fires have occurred across vast areas of the seasonal snow zone in recent decades, however we do not understand the long-term implications of burned forests in montane headwaters to snow hydrology and downstream water resources. Across a chronosequence of nine burned forests in the Colorado River Headwaters, we sampled snow throughout the complete snowpack profile to conserve the composition, properties, and vertical stratigraphy of impurities in the snowpack during maximum snow accumulation. Using state-of-the-art geochemical analyses, we determined the magnitude, composition, and particle size distribution of black carbon, dust, and other impurities in the snowpack relative to years-since fire. Forest fires continue to darken snow for many years following fire, however the magnitude, composition, and particle size distribution of impurities change through time, altering the post-fire radiative forcing on snow as a burned forest ages.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2017
- Bibcode:
- 2017AGUFM.C13B0959G
- Keywords:
-
- 0305 Aerosols and particles;
- ATMOSPHERIC COMPOSITION AND STRUCTURE;
- 0762 Mass balance 0764 Energy balance;
- CRYOSPHERE;
- 0792 Contaminants;
- CRYOSPHERE;
- 1863 Snow and ice;
- HYDROLOGY