Assessment of Vegetation Responses and Sensitivity to the Millennium Drought in Australia
Abstract
During the period from 1997 to 2009, Australia experienced one of the most severe and persistent drought known as the Millennium Drought (MD). Major water shortages were reported across the Australian continent as well as a great many tree mortality during and post this drought event. Given the projection of hotter and drier conditions for much of the continent (Hughes 2003), it is critical to analyze the impacts of climate extremes like MD as an indicator of possible impacts of future trends. A few drought assessments have been performed for the MD but their utilization of single-source Remote sensing data like vegetation indices makes it difficult to produce a comprehensive understanding of drought responses for diverse ecosystems in Australia. Furthermore, methods adopted in past drought assessments did not distinguish vegetation responses to drought events with different intensity, duration and sequence, which are critically important in determining the magnitude of vegetation responses to drought. Here, multi-source remote sensing datasets and an event-based drought assessment method were employed to assess the impacts of MD on vegetation in Australia in terms of the magnitude and sensitivity. Vegetation variables examined include fraction of photosynthetically absorbed radiation (Fpar), vegetation optical depth (VOD) and aboveground biomass (AGB). Drought indicators were calculated based on precipitation and potential evapotranspiration. Results show that most of Eastern Australia experienced abnormal water deficit during the MD and drought intensity was greatest in humid regions. The decline in aboveground biomass (ABC) demonstrates consistent variation with drought intensity across aridity levels. Drought impacts on Fpar and VOD were greatest at intermediate dryness and for woodier ecosystems, with impacts appearing in Fpar before VOD. Drought sensitivity was also greatest at intermediate dryness and for woodier ecosystems. The small difference in drought sensitivity, in terms of Fpar and VOD, across biomes suggests that trees, shrubs, and herbaceous are equally vulnerable to canopy dieback while the high drought sensitivity of trees as shown in ABC implies that a large amount of carbon could be released to the atmosphere if intense and long-duration drought occurs in forested areas.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2017
- Bibcode:
- 2017AGUFM.B51G1884J
- Keywords:
-
- 0439 Ecosystems;
- structure and dynamics;
- BIOGEOSCIENCES;
- 0476 Plant ecology;
- BIOGEOSCIENCES;
- 1615 Biogeochemical cycles;
- processes;
- and modeling;
- GLOBAL CHANGE;
- 1813 Eco-hydrology;
- HYDROLOGY