Photosynthetic capacity regulation is uncoupled from nutrient limitation
Abstract
Ecosystem and Earth system models need information on leaf-level photosynthetic capacity, but to date typically rely on empirical estimates and an assumed dependence on nitrogen supply. Recent evidence suggests that leaf nitrogen is actively controlled though plant responses to photosynthetic demand. Here, we propose and test a theory of demand-driven coordination of photosynthetic processes, and use it to assess the relative roles of nutrient supply and photosynthetic demand. The theory captured 63% of observed variability in a global dataset of Rubisco carboxylation capacity (Vcmax; 3,939 values at 219 sites), suggesting that environmentally regulated biophysical costs and light availability are the first-order drivers of photosynthetic capacity. Leaf nitrogen, on the other hand, was a weak secondary driver of Vcmax, explaining less than 6% of additional observed variability. We conclude that leaf nutrient allocation is primarily driven by demand. Our theory offers a simple, robust strategy for dynamically predicting leaf-level photosynthetic capacity in global models.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2017
- Bibcode:
- 2017AGUFM.B51B1795S
- Keywords:
-
- 0414 Biogeochemical cycles;
- processes;
- and modeling;
- BIOGEOSCIENCES;
- 0430 Computational methods and data processing;
- BIOGEOSCIENCES;
- 0439 Ecosystems;
- structure and dynamics;
- BIOGEOSCIENCES;
- 1910 Data assimilation;
- integration and fusion;
- INFORMATICS