Obtaining big data of vegetation using artificial neural network
Abstract
To carry out predictive studies concerning ecosystems, obtaining appropriate datasets is one of the key factors. Recently, applications of neural network such as deep learning have successfully overcome difficulties in data acquisition and added large datasets for predictive science. For example, deep learning is very powerful in identifying and counting people, cars, etc. However, for vegetation science, deep learning has not been widely used. In general, differing from animals, plants have characteristics of modular growth. For example, numbers of leaves and stems which one individual plant typically possesses are not predetermined but change flexibly according to environmental conditions. This is clearly different from that the standard model of human face has predetermined numbers of parts, such as two eyes, one mouth, and so on. This characteristics of plants can make object identification difficult. In this study, a simple but effective technique was used to overcome the difficulty of visual identification of plants, and automated classification of plant types and quantitative analyses were become possible. For instance, when our method was applied to classify bryophytes, one of the most difficult plant types for computer vision due to their amorphous shapes, the performance of identification model was typically over 90% success. With this technology, it may be possible to obtain the big data of plant type, size, density etc. from satellite and/or drone imageries, in a quantitative manner. this will allow progress in predictive biogeosciences.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2017
- Bibcode:
- 2017AGUFM.B51B1794I
- Keywords:
-
- 0414 Biogeochemical cycles;
- processes;
- and modeling;
- BIOGEOSCIENCES;
- 0430 Computational methods and data processing;
- BIOGEOSCIENCES;
- 0439 Ecosystems;
- structure and dynamics;
- BIOGEOSCIENCES;
- 1910 Data assimilation;
- integration and fusion;
- INFORMATICS