Peat Archives in the Hudson River Estuary… Marsh Formation, Carbon Storage and Release, and Resilience
Abstract
We target deep peat stores (at least 8 meters) of carbon in the lower Hudson Estuary, which formed as the glacial fjord became an estuary with mid-Holocene sea level rise. These deep marshes play an extremely important role in the estuary health and stability in a changing climate. Never before have we faced the threats to coastal marshes that we are facing today, and the resulting sedimentation rates, inorganic/organic component histories, pollen, macrofossil, isotopic, and XRF data reveal critical information about past vegetation and climate change. Long-term shifts in organic/inorganic storage appear to be linked to drought, as watershed erosion results in more sand, silt and clay in the marshes. Climatic shifts often result in regional watershed shifts in vegetation, both locally and regionally. Understanding how these marshes are linked to human impact (disturbance, invasive species, higher nitrogen, heavy metal pollution, dams) over the last four centuries is critical to providing management of these key ecosystems, and their preservation as sea level rises. Quantification of processes that cause carbon degradation and release from these wetlands to the estuary is also key to this investigation. Peat loss would contribute to heavy metal pollution in the estuary as well as carbon loss. Young investigators from secondary schools in New York City participated in much of the fieldwork as part of the NASA/GISS NYC Research Initiative and the LDEO Secondary School Field Research Carbon Team.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2017
- Bibcode:
- 2017AGUFM.B43G2210P
- Keywords:
-
- 0428 Carbon cycling;
- BIOGEOSCIENCES;
- 0497 Wetlands;
- BIOGEOSCIENCES