Stochastic spatio-temporal model of coral cover as a function of herbivorous grazers, water quality, and coral demographics
Abstract
Over the last 60 years we have seen an increased amount of ecological regime shifts in tropical coastal zones, from coral reefs to macroalgae dominated states, as a result of natural and anthropogenic stresses. However, these shifts are not always immediate- macroalgae are generally present in coral reefs, with their distribution regulated by herbivorous fish. This is especially true in Moorea, French Polynesia, where macroalgae are shown to flourish in spaces that provide refuge from roaming herbivores. While there are currently modeling efforts in projecting ecological regime shifts in Moorea, temporal deterministic models have been utilized, which fail to capture metastability between multiple steady states and can have issues when dealing with very small populations. To address these concerns, we build on these models to account for spatial variations and individual organisms, as well as stochasticity. Our model can project the percent cover of coral, macroalgae, and algae turf as a function of herbivorous grazers, water quality, and coral demographics. Grazers, included as individual fish (particles), evolve according to a kinetic model and interact with neighbouring benthic assemblages, represented as nodes. Water quality and coral demographics are input parameters that can vary over time, allowing our model to be run for temporally changing scenarios and to be adjusted for different reefs. We plan to engage with previous Moorea Reef Resilience Models through a comparative analysis of our models' outcomes and existing Moorea data. Coupling projective models with available data is useful for informing environmental policy and advancing the modeling field.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2017
- Bibcode:
- 2017AGUFM.B43C2145N
- Keywords:
-
- 0414 Biogeochemical cycles;
- processes;
- and modeling;
- BIOGEOSCIENCES;
- 0439 Ecosystems;
- structure and dynamics;
- BIOGEOSCIENCES;
- 0442 Estuarine and nearshore processes;
- BIOGEOSCIENCES;
- 1839 Hydrologic scaling;
- HYDROLOGY