Dryland responses to global change suggest the potential for rapid non-linear responses to some changes but resilience to others
Abstract
Drylands represent our planet's largest terrestrial biome, making up over 35% of Earth's land surface. In the context of this vast areal extent, it is no surprise that recent research suggests dryland inter-annual variability and responses to change have the potential to drive biogeochemical cycles and climate at the global-scale. Further, the data we do have suggest drylands can respond rapidly and non-linearly to change. Nevertheless, our understanding of the cross-system consistency of and mechanisms behind dryland responses to a changed environment remains relatively poor. This poor understanding hinders not only our larger understanding of terrestrial ecosystem function, but also our capacity to forecast future global biogeochemical cycles and climate. Here we present data from a series of Colorado Plateau manipulation experiments - including climate, land use, and nitrogen deposition manipulations - to explore how vascular plants, microbial communities, and biological soil crusts (a community of mosses, lichens, and/or cyanobacteria living in the interspace among vascular plants in arid and semiarid ecosystems worldwide) respond to a host of environmental changes. These responses include not only assessments of community composition, but of their function as well. We will explore photosynthesis, net soil CO2 exchange, soil carbon stocks and chemistry, albedo, and nutrient cycling. The experiments were begun with independent questions and cover a range of environmental change drivers and scientific approaches, but together offer a relatively holistic picture of how some drylands can change their structure and function in response to change. In particular, the data show very high ecosystem vulnerability to particular drivers, but surprising resilience to others, suggesting a multi-faceted response of these diverse systems.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2017
- Bibcode:
- 2017AGUFM.B41L..01R
- Keywords:
-
- 0439 Ecosystems;
- structure and dynamics;
- BIOGEOSCIENCES;
- 0476 Plant ecology;
- BIOGEOSCIENCES;
- 1615 Biogeochemical cycles;
- processes;
- and modeling;
- GLOBAL CHANGE;
- 1813 Eco-hydrology;
- HYDROLOGY