Identifying Factors Causing Variability in Greenhouse Gas (GHG) Fluxes in a Polygonal Tundra Landscape
Abstract
Greenhouse gas (GHG) flux variations in Arctic tundra environments are important to understand because of the vast amount of soil carbon stored in these regions and the potential of these regions to convert from a global carbon sink to a source under warmer conditions. Multiple factors potentially contribute to GHG flux variations observed in these environments, including snowmelt timing, growing season length, active layer thickness, water table variations, and temperature fluctuations. The objectives of this study are to investigate temporal variability in CO2 and CH4 fluxes at Barrow, AK over three successive growing seasons (2012-14) and to determine the factors influencing this variability using a novel entropy-based classification scheme. We analyzed soil, vegetation, and climate parameters as well as GHG fluxes at multiple locations within low-, flat- and high-centered polygons at Barrow, AK as part of the Next Generation Ecosystem Experiment (NGEE) Arctic project. Entropy results indicate that different environmental factors govern variability in GHG fluxes under different spatiotemporal settings. In particular, flat-centered polygons are more likely to become significant sources of CO2 during warm and dry years as opposed to high-centered polygons that contribute considerably to CO2 emissions during cold and wet years. In contrast, the highest CH4 emissions were always associated with low-centered polygons. Temporal variability in CO2 fluxes was primarily associated with factors affecting soil temperature and/or vegetation dynamics during early and late season periods. Temporal variability in CH4 fluxes was primarily associated with changes in vegetation cover and its covariability with primary controls such as seasonal thaw—rather than direct response to changes in soil moisture. Overall, entropy results document which factors became important under different spatiotemporal settings, thus providing clues concerning the manner in which ecosystem properties may be altered regionally in a future climate.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2017
- Bibcode:
- 2017AGUFM.B41I2082A
- Keywords:
-
- 0428 Carbon cycling;
- BIOGEOSCIENCES;
- 0486 Soils/pedology;
- BIOGEOSCIENCES;
- 0702 Permafrost;
- CRYOSPHERE;
- 1615 Biogeochemical cycles;
- processes;
- and modeling;
- GLOBAL CHANGE