The Role of Priming in the Development of Stable and Radioactive Carbon Isotope Profiles of Soil Organic Matter
Abstract
The stability of soil carbon (C) is one of the largest sources of uncertainty in global C cycle models and is central to identifying potential feedbacks to a warming climate. The role that more stable soil organic matter (SOM) pools could have in these feedbacks is highly uncertain. Stable C isotope (δ13C) and radiocarbon (14C) SOM profiles are used to understand the processes involved in soil C stabilization. In this study, we use a 1-dimensional, 3 pool soil C model to simulate the development of SOM δ13C and 14C profiles in a well-drained forest soil. Under the simplest model scenario where decomposition rate constants for each SOM pool remain fixed, model runs exhibit a buildup of slowly degrading C in the shallow subsurface (0-5cm) where fresh, labile C typically dominates in natural soils. Additionally, magnitudes of trends in SOM δ13C and 14C profiles were inconsistent with those observed in natural profiles, suggesting a deficiency in this version of the model. We hypothesize that the observed disparity between modeled and natural profiles is due to the absence of priming in the model. Priming effects presume a change in decomposition rate constants for recalcitrant C pools upon the addition of labile C to the soil. As such, priming effects were simulated in the model by making decomposition rate constants a function of labile C input (e.g., root C and leaf litter). The incorporation of priming into the model yields larger, more realistic shifts in SOM δ13C profiles and trends in 14C profiles that vary based on the sensitivity of recalcitrant pools to labile C addition. So far, the results from this study support the hypothesis that SOM δ13C and 14C profiles cannot be explained without priming. These results highlight the importance of priming to our understanding of the persistence of stable C in the soil and our ability to use SOM δ13C and 14C trends as a means to quantify C stability.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2017
- Bibcode:
- 2017AGUFM.B41E2000S
- Keywords:
-
- 0439 Ecosystems;
- structure and dynamics;
- BIOGEOSCIENCES;
- 0486 Soils/pedology;
- BIOGEOSCIENCES;
- 1615 Biogeochemical cycles;
- processes;
- and modeling;
- GLOBAL CHANGE;
- 1630 Impacts of global change;
- GLOBAL CHANGE