Organic N cycling in Arctic ecosystems: Quantifying root uptake kinetics and temporal variability of soil amino acids.
Abstract
Arctic ecosystems are undergoing shifts in plant community composition with increased warming. How these changes may alter ecosystem function is not well constrained, owing in part to uncertainties on how plant-soil feedbacks influence nutrient cycling. For nitrogen (N), in particular, understanding how these feedbacks may alter cycling rates is challenging because i) Arctic plants take up organic N (i.e., amino acids; AA) when inorganic N is limiting, yet ii) it has never been quantified, for any plant species growing in the wild, how much of its N demand is actually met by taking up AA. To advance fundamental understanding of plant-soil feedbacks as the Arctic warms, we are integrating field measurements of AA availability in N-limited tussock tundra (E. vaginatum) and a comparably less N-limited birch shrub tundra (Betula nana and Salix spp.) with a root uptake model. We used soil microdialysis to determine available AA concentrations in the soil solution and potential rates of AA diffusion and mass flow to roots at the Toolik Field Station in Alaska. These measurements are being combined with AA root uptake kinetic experiments using E. vaginatum to establish actual AA root uptake rates. We found that in the early growing season (June), total AA concentrations in the soil solution averaged 104 µg N L-1 and were similar to NH4+ across sites. In the late growing season (August), AA were the dominant form of N averaging 75 µg N L-1 while NH4+ decreased to 13 µg N L-1. In the early growing season AA diffusion rates in the soil averaged 200 ng N cm-2 s-1 and declined to 150 ng N cm-2 s-1 in the late growing season. Lysine, serine, and arginine were the most abundant AA and differences in the N status of sites did not affect total AA concentrations. Amino acids made up at least half of the N diffusing through the soil solution, suggesting they can subsidize the N demand of arctic plants. Ongoing field experiments at Toolik will be used to constrain actual AA root uptake rates.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2017
- Bibcode:
- 2017AGUFM.B41A1928H
- Keywords:
-
- 0475 Permafrost;
- cryosphere;
- and high-latitude processes;
- BIOGEOSCIENCES;
- 0718 Tundra;
- CRYOSPHERE;
- 1632 Land cover change;
- GLOBAL CHANGE;
- 1640 Remote sensing;
- GLOBAL CHANGE