Examining the Relationship Between Edaphic Variables and the Rooting System of Abies concolor in the southern Sierra Nevada
Abstract
An increase in the frequency and severity of droughts has been associated with the changing climate. These events have the potential to alter the composition and biogeography of forests, as well as increase tree mortality related to climate-induced stress. Already, an increase in tree mortality has been observed throughout the US. The recent drought in California led to millions of tree mortalities in the southern Sierra Nevada alone. In order to assess the potential impacts of these events on forest systems, it is imperative to understand what factors contribute to tree mortality. As plants become water-stressed, they may invest carbon more heavily belowground to reach a bigger pool of water, but their ability to adapt may be limited by the characteristics of the soil. In the Southern Sierra Critical Zone Observatory, a high tree mortality zone, we have selected both dead and living trees to examine the factors that contribute to root zone variability and belowground biomass investment by individual plants. A series of 15 cores surrounding the tree were taken to collect root and soil samples. These were then used to compare belowground rooting distributions with soil characteristics (texture, water holding capacity, pH, electric conductivity). Abies concolor is heavily affected by drought-induced mortality, therefore the rooting systems of dead Abies concolor trees were examined to determine the relationship between their rooting systems and environmental conditions. Examining the relationship between soil characteristics and rooting systems of trees may shed light on the plasticity of rooting systems and how trees adapt based on the characteristics of its environment. A better understanding of the factors that contribute to tree mortality can improve our ability to predict how forest systems may be impacted by climate-induced stress. Key words: Root systems, soil characteristics, drought, adaptation, terrestrial carbon, forest ecology
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2017
- Bibcode:
- 2017AGUFM.B13F1816W
- Keywords:
-
- 0414 Biogeochemical cycles;
- processes;
- and modeling;
- BIOGEOSCIENCES;
- 0429 Climate dynamics;
- BIOGEOSCIENCES;
- 0438 Diel;
- seasonal;
- and annual cycles;
- BIOGEOSCIENCES;
- 0439 Ecosystems;
- structure and dynamics;
- BIOGEOSCIENCES