Constraints on Nitrous Oxide emissions within the US Corn Belt using tall tower observations and an Eulerian Modeling Approach
Abstract
Mitigation of nitrous oxide (N2O) emissions requires a sound understanding of N2O production processes and a robust estimate of N2O budgets. It is critical to understand how emissions vary spatially and temporally, and how they are likely to change given future climate and land management decisions. To address these challenges we have coupled two models including WRF-Chem version 3.8.1 and CLM-GBC-CROP version 4.5 to simulate retrospective and future N2O emissions for the US Corn Belt. Using 7 years (2010-2016) of N2O mixing ratio data from 6 tall tower sites within the US Midwest, we ran the coupled model at a spatial resolution of 0.125o× 0.125o and tested and optimized the simulation of N2O emissions at hourly, seasonal, and inter-annual timescales. Our preliminary results indicate:1) The simulated tall tower mixing ratios for 6 tall towers were all significantly higher than the observations in the growing seasons, indicating a high bias of N2O emissions when using the default N2O production mechanisms in CLM. 2) Following the optimization of N2O production in CLM, the simulated tall tower mixing ratios were strongly correlated with the KCMP and WBI towers, and had moderate correlation with the BAO tower. Overall, the absolute biases in mixing ratios were relatively small. Our next step is to examine 7 years of simulations to assess the spatiotemporal variations of direct and indirect emissions within the US Corn Belt to help identify potential N2O hotspots and hot moments.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2017
- Bibcode:
- 2017AGUFM.B13B1780C
- Keywords:
-
- 0315 Biosphere/atmosphere interactions;
- ATMOSPHERIC COMPOSITION AND STRUCTURE;
- 0414 Biogeochemical cycles;
- processes;
- and modeling;
- BIOGEOSCIENCES;
- 0469 Nitrogen cycling;
- BIOGEOSCIENCES;
- 0490 Trace gases;
- BIOGEOSCIENCES