How Much Can Remotely-Sensed Natural Resource Inventories Benefit from Finer Spatial Resolutions?
Abstract
For remote sensing facilitated natural resource inventories, the effects of spatial resolution in the form of pixel size and the effects of subpixel information on estimates of population parameters were evaluated by comparing results obtained using Landsat 8 and RapidEye auxiliary imagery. The study area was in Burkina Faso, and the variable of interest was the stem volume (m3/ha) convertible to the woodland aboveground biomass. A sample consisting of 160 field plots was selected and measured from the population following a two-stage sampling design. Models were fit using weighted least squares; the population mean, mu, and the variance of the estimator of the population mean, Var(mu.hat), were estimated in two inferential frameworks, model-based and model-assisted, and compared; for each framework, Var(mu.hat) was estimated both analytically and empirically. Empirical variances were estimated with bootstrapping that for resampling takes clustering effects into account. The primary results were twofold. First, for the effects of spatial resolution and subpixel information, four conclusions are relevant: (1) finer spatial resolution imagery indeed contributes to greater precision for estimators of population parameter, but this increase is slight at a maximum rate of 20% considering that RapidEye data are 36 times finer resolution than Landsat 8 data; (2) subpixel information on texture is marginally beneficial when it comes to making inference for population of large areas; (3) cost-effectiveness is more favorable for the free of charge Landsat 8 imagery than RapidEye imagery; and (4) for a given plot size, candidate remote sensing auxiliary datasets are more cost-effective when their spatial resolutions are similar to the plot size than with much finer alternatives. Second, for the comparison between estimators, three conclusions are relevant: (1) model-based variance estimates are consistent with each other and about half as large as stabilized model-assisted estimates, suggesting superior effectiveness of model-based inference to model-assisted inference; (2) bootstrapping is an effective alternative to analytical variance estimators; and (3) prediction accuracy expressed by RMSE is useful for screening candidate models to be used for population inferences.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2017
- Bibcode:
- 2017AGUFM.B13A1756H
- Keywords:
-
- 0428 Carbon cycling;
- BIOGEOSCIENCES;
- 0439 Ecosystems;
- structure and dynamics;
- BIOGEOSCIENCES;
- 0480 Remote sensing;
- BIOGEOSCIENCES;
- 1640 Remote sensing;
- GLOBAL CHANGE