Quantification of Concentration of Microalgae Anabaena Cylindrica, Coal-bed Methane Water Isolates Nannochloropsis Gaditana and PW-95 in Aquatic Solutions through Hyperspectral Reflectance Measurement and Analytical Model Establishment
Abstract
Three species of microalgae, Anabaena cylindrica (UTEX # 1611), coal-bed methane water isolates Nannochloropsis gaditana and PW-95 were cultured for the measurements of their hyperspectral profiles in different concentrations. The hyperspectral data were measured by an Analytical Spectral Devices (ASD) spectroradiomter with the spectral resolution of 1 nanometer over the wavelength ranges from 350nm to 1050 nm for samples of microalgae of different concentration. Concentration of microalgae was measured using a Hemocytometer under microscope. The objective of this study is to establish the relation between spectral reflectance and micro-algal concentration so that microalgae concentration can be measured remotely by space- or airborne hyperspectral or multispectral sensors. Two types of analytical models, linear reflectance-concentration model and Lamber-Beer reflectance-concentration model, were established for each species. For linear modeling, the wavelength with the maximum correlation coefficient between the reflectance and concentrations of algae was located and then selected for each species of algae. The results of the linear models for each species are shown in Fig.1(a), in which Refl_1, Refl_2, and Refl_3 represent the reflectance of Anabaena, N. Gaditana, and PW-95 respectively. C1, C2, and C3 represent the Concentrations of Anabaena, N. Gaditana, and PW-95 respectively. The Lamber-Beer models were based on the Lambert-Beer Law, which states that the intensity of light propagating in a substance dissolved in a fully transmitting solvent is directly proportional to the concentration of the substance and the path length of the light through the solution. Thus, for the Lamber-Beer modeling, a wavelength with large absorption in red band was selected for each species. The results of Lambert-Beer models for each species are shown in Fig.1(b). Based on the Lamber-Beer models, the absorption coefficient for the three different species will be quantified.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2017
- Bibcode:
- 2017AGUFM.B11G1750Z
- Keywords:
-
- 0439 Ecosystems;
- structure and dynamics;
- BIOGEOSCIENCES;
- 0448 Geomicrobiology;
- BIOGEOSCIENCES;
- 0456 Life in extreme environments;
- BIOGEOSCIENCES;
- 0465 Microbiology: ecology;
- physiology and genomics;
- BIOGEOSCIENCES