Assessment of water availability and its relationship with vegetation distribution over a tropical montane system
Abstract
Water availability is one of the main drivers of vegetation distribution, but assessing it over mountainous regions is difficult given the effects of rugged topography on hydroclimatic dynamics (orographic rainfall, soil water, and runoff). We assessed how water availability may influence the distribution of vegetation types in the Espinhaço Range, a South American tropical mountain landscape comprised of savannas, grasslands, rock outcrops, cloud forests, and semi-deciduous/deciduous forests. For precipitation, we used CHIRPS monthly and daily products (1981- 2016) and 112 rain gauge ground stations, and assessed potential evapotranspiration (PET) using the MODIS MOD16A3 (2000-2013) product. Vegetation types were classified according to the Global Ecoregions by WWF. We show that rainfall has well-defined rainy and dry seasons with a strong latitudinal pattern, there is evidence for local orographic effects. Dry forests (907 mm/yr; 8% cv) and caatinga vegetation (795 mm/yr; 7% cv) had the lowest average annual precipitation and low variance, whilst Atlantic tropical forest in the southeast (1267 mm/yr; 15% cv), cerrado savanna vegetation in the west (1086 mm/yr; 15% cv) and rupestrian grasslands above 800m (1261 mm/yr; 20% cv) received the highest annual precipitation, with the largest observed variance due to their wide latitudinal distribution. Forests and rupestrian grasslands in the windward side of the mountain had a higher frequency of intense rainfall events (> 20mm), accounting for 6% of the CHIRPS daily time series, suggesting orographic effects on precipitation. Annual average PET was highest for dry forests (2437 mm/yr) and caatinga (2461 mm/yr), intermediate for cerrado (2264 mm/yr) and lowest for Atlantic tropical forest (2083 mm/yr) and rupestrian grasslands (2136 mm/yr). All vegetation types received less rainfall than its PET capacity based on yearly data, emphasizing the need for ecophysiological adaptations to water use. Climate change threatens these ecosystems by possible alterations on the hydrological cycle and, consequently, capacity for adaptations on water use. These could lead to shifts in vegetation composition and distribution within the studied region. Further investigation of seasonal trends on water availability and edaphic factors would improve these analyses.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2017
- Bibcode:
- 2017AGUFM.B11F1724S
- Keywords:
-
- 0426 Biosphere/atmosphere interactions;
- BIOGEOSCIENCES;
- 0439 Ecosystems;
- structure and dynamics;
- BIOGEOSCIENCES;
- 0480 Remote sensing;
- BIOGEOSCIENCES;
- 1632 Land cover change;
- GLOBAL CHANGE