Chemical Degradation of Polyacrylamide during Hydraulic Fracturing
Abstract
Polyacrylamide (PAM) based friction reducers are a primary ingredient of slickwater hydraulic fracturing fluids. Little is known regarding the fate of these polymers under downhole conditions, which could have important environmental impacts including strategies for reuse or treatment of flowback water. The objective of this study was to evaluate the chemical degradation of high molecular weight PAM, including the effects of shale, oxygen, temperature, pressure, and salinity. Data were obtained with a slickwater fracturing fluid exposed to both a shale sample collected from a Marcellus shale outcrop and to Marcellus core samples at high pressures/temperatures (HPT) simulating downhole conditions. Based on size exclusion chromatography analyses, the peak molecular weight of the PAM was reduced by two orders of magnitude, from roughly 10 MDa to 200 kDa under typical HPT fracturing conditions. The rate of degradation was independent of pressure and salinity but increased significantly at high temperatures and in the presence of oxygen dissolved in fracturing fluid. Results were consistent with a free radical chain scission mechanism, supported by measurements of sub-M hydroxyl radical concentrations. The shale sample adsorbed some PAM ( 30%), but importantly it catalyzed the chemical degradation of PAM, likely due to dissolution of Fe2+ at low pH. These results provide the first evidence of radical-induced degradation of PAM under HPT hydraulic fracturing conditions without additional oxidative breaker.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2017
- Bibcode:
- 2017AGUFM.B11B1674X
- Keywords:
-
- 0448 Geomicrobiology;
- BIOGEOSCIENCES;
- 0463 Microbe/mineral interactions;
- BIOGEOSCIENCES;
- 1055 Organic and biogenic geochemistry;
- GEOCHEMISTRY;
- 5104 Fracture and flow;
- PHYSICAL PROPERTIES OF ROCKS