Contrasting self-aggregation over land and ocean surfaces
Abstract
The spontaneous organization of convection into clusters, or self-aggregation, demonstrably changes the nature and statistics of precipitation. While there has been much recent progress in this area, the processes that control self-aggregation are still poorly understood. Most of the work to date has focused on self-aggregation over ocean-like surfaces, but it is particularly pressing to understand what controls convective aggregation over land, since the associated change in precipitation statistics—between non-aggregated and aggregated convection—could have huge impacts on society and infrastructure. Radiative-convective equilibrium (RCE), has been extensively used as an idealized framework to study the tropical atmosphere. Self-aggregation manifests in numerous numerical models of RCE, nevertheless, there is still a lack of understanding in how it relates to convective organization in the observed world. Numerous studies have examined self-aggregation using idealized Cloud Resolving Models (CRMs) and General Circulation Models over the ocean, however very little work has been done on RCE and self-aggregation over land. Idealized models of RCE over ocean have shown that aggregation is sensitive to sea surface temperature (SST), more intense precipitation occurs in aggregated systems, and a variety of feedbacks—such as surface flux, cloud radiative, and upgradient moisture transport— contribute to the maintenance of aggregation, however it is not clear if these results apply over land. Progress in this area could help relate understanding of self-aggregation in idealized simulations to observations. In order to explore the behavior of self-aggregation over land, we use a CRM to simulate idealized RCE over land. In particular, we examine the aggregation of convection and how it compares with aggregation over ocean. Based on previous studies, where a variety of different CRMs exhibit a SST threshold below which self-aggregation does not occur, we hypothesize that idealized land simulations will exhibit similar threshold behavior when there is an adequate surface moisture supply. We systematically explore this by varying parameters that exert strong control on the surface enthalpy and moisture budget, such as type of land, surface albedo, and greenhouse gas concentration.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2017
- Bibcode:
- 2017AGUFM.A53C2266I
- Keywords:
-
- 3305 Climate change and variability;
- ATMOSPHERIC PROCESSES;
- 3329 Mesoscale meteorology;
- ATMOSPHERIC PROCESSES;
- 3372 Tropical cyclones;
- ATMOSPHERIC PROCESSES;
- 4313 Extreme events;
- NATURAL HAZARDS