North Atlantic Tropical Cyclone Precipitation and Climate Interactions Using a High-Resolution Dataset for the Eastern United States, 1948-2015.
Abstract
Tropical cyclone (TC) impacts are typically concentrated along the coast, yet some TC hazards have wider spatial distributions and affect inland regions. For example, large volumes of TC precipitation (TCP) can cause severe inland flooding, initiate slope failure, and create large sinkholes. Previous studies show that TCP contributes substantially to seasonal precipitation budgets in the eastern United States. However, present knowledge of TCP climatology in the US is limited by the spatial coverage of weather stations. Here we develop a new high resolution (0.25°x0.25°) TCP climatology using HURDAT2 and CPC US Unified Precipitation data (1948-2015). From June to November (JJASON), maximum total TCP for the study period ranges from 2200 to 3800 mm along much of the coast and decreases inland. Likewise, spatial patterns of TCP contribution to total JJASON precipitation largely mirror those of total TCP, with maxima (6-8%) located in coastal Texas and North Carolina. Similar spatial patterns are seen in the mean JJASON TCP and mean TCP contribution over the study period, with maxima extending beyond coastal Texas and North Carolina. JJASON TCP (total, mean, and contribution) was correlated with mean annual JJASON values for the Bermuda High Index (BHI), El Niño-Southern Oscillation combined Niño3.4/Southern Oscillation Index (ENSO-BEST), and North Atlantic Oscillation (NAO). Correlations between climate indices and JJASON TCP show the degree to which BHI, ENSO-BEST, and NAO influence spatiotemporal changes in TCP. Of the three indices, the BHI had the strongest and most spatially consistent correlation with TCP, with significant correlations in the interior of the southeast. These results indicate a strong regional relationship between the North Atlantic Subtropical High (NASH; represented by the BHI) and regional TCP distribution. TCP distribution depends on TC track direction, and is therefore connected to the NASH, which acts as a steering mechanism for TCs. Our derived high resolution TCP climatology further aids our understanding of TC-climate interactions. Moreover, it can be used to understand hazards associated with TCs, serving as an invaluable tool in hazard mitigation efforts.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2017
- Bibcode:
- 2017AGUFM.A53C2265B
- Keywords:
-
- 3305 Climate change and variability;
- ATMOSPHERIC PROCESSES;
- 3329 Mesoscale meteorology;
- ATMOSPHERIC PROCESSES;
- 3372 Tropical cyclones;
- ATMOSPHERIC PROCESSES;
- 4313 Extreme events;
- NATURAL HAZARDS