New Science Enabled by the NASA TROPICS CubeSat Constellation Mission
Abstract
Recent technology advances in miniature microwave radiometers that can be hosted on very small satellites has made possible a new class of affordable constellation missions that provide very high revisit rates of tropical cyclones and other severe weather. The Time-Resolved Observations of Precipitation structure and storm Intensity with a Constellation of Smallsats (TROPICS) mission was selected by NASA as part of the Earth Venture-Instrument (EVI-3) program and is now in development with planned launch readiness in late 2019. The overarching goal for TROPICS is to provide nearly all-weather observations of 3-D temperature and humidity, as well as cloud ice and precipitation horizontal structure, at high temporal resolution to conduct high-value science investigations of tropical cyclones, including: (1) relationships of rapidly evolving precipitation and upper cloud structures to upper-level warm-core intensity and associated storm intensity changes; (2) the evolution of precipitation structure and storm intensification in relationship to environmental humidity fields; and (3) the impact of rapid-update observations on numerical and statistical intensity forecasts of tropical cyclones. TROPICS will provide rapid-refresh microwave measurements (median refresh rate better than 60 minutes for the baseline mission) over the tropics that can be used to observe the thermodynamics of the troposphere and precipitation structure for storm systems at the mesoscale and synoptic scale over the entire storm lifecycle. TROPICS comprises a constellation of six CubeSats in three low-Earth orbital planes. Each CubeSat will host a high performance radiometer to provide temperature profiles using seven channels near the 118.75 GHz oxygen absorption line, water vapor profiles using 3 channels near the 183 GHz water vapor absorption line, imagery in a single channel near 90 GHz for precipitation measurements (when combined with higher resolution water vapor channels), and a single channel at 206 GHz that is more sensitive to precipitation-sized ice particles. This observing system offers an unprecedented combination of horizontal and temporal resolution to measure environmental and inner-core conditions for tropical cyclones on a nearly global scale.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2017
- Bibcode:
- 2017AGUFM.A41I2408B
- Keywords:
-
- 0394 Instruments and techniques;
- ATMOSPHERIC COMPOSITION AND STRUCTURE;
- 3360 Remote sensing;
- ATMOSPHERIC PROCESSES;
- 7599 General or miscellaneous;
- SOLAR PHYSICS;
- ASTROPHYSICS;
- AND ASTRONOMY;
- 7999 General or miscellaneous;
- SPACE WEATHER