The Rocket Investigation of Current Closure in the Ionosphere (RICCI) mission: A novel application of CubeSats from a sounding rocket platform
Abstract
The transfer of energy and momentum between the terrestrial magnetosphere and ionosphere is substantially mediated by large-scale field-aligned currents (FACs), driven by magnetopause dynamics and magnetospheric pressures and closing through the ionosphere where the dissipation and drag are governed. While significant insight into ionospheric electrodynamics and the nature of magnetosphere-ionosphere (M-I) coupling have been gained by rocket and satellite measurements, in situ measurement of these ionospheric closure currents remains challenging. To date the best estimates of ionospheric current densities are inferred from ground-based radar observations combining electric fields calculated from drifts with conductivities derived from densities. RICCI aims to observe the structure of the ionospheric currents in situ to determine how the altitude structure of these currents is related to precipitation and density cavities, electromagnetic dynamics, and governs energy dissipation in the ionosphere. In situ measurement of the current density using multi-point measurements of the magnetic field requires precise attitude knowledge for which the only demonstrated technique is the use of star camera systems. The low vehicle rotation rates required for miniature commercial off-the-shelf (COTS) star cameras prohibit the use of available rocket sub-payload technologies at Wallops Flight Facility (WFF) which use high rates of spin to stabilize attitude. However, CubeSat attitude systems are already designed to achieve low vehicle rotation rates, so RICCI will use a set of three CubeSat sub-payloads deployed from a main low altitude payload with apogee of 160 km to provide precise current density measurement through the ionospheric closure altitude regime, together with a second rocket with apogee near 320 km to measure the incident input energy flux and convection electric field. The two rocket payloads and CubeSate sub-payloads are all instrumented with star cameras and science-grade magnetometers. We discuss the mission design, payload complement, and science closure of this sub-orbital mission to obtain the first direct measurement of ionospheric currents associated with an auroral arc.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2017
- Bibcode:
- 2017AGUFM.A41I2404C
- Keywords:
-
- 0394 Instruments and techniques;
- ATMOSPHERIC COMPOSITION AND STRUCTURE;
- 3360 Remote sensing;
- ATMOSPHERIC PROCESSES;
- 7599 General or miscellaneous;
- SOLAR PHYSICS;
- ASTROPHYSICS;
- AND ASTRONOMY;
- 7999 General or miscellaneous;
- SPACE WEATHER