Leveraging CubeSat Technology to Address Nighttime Imagery Requirements over the Arctic
Abstract
The National Oceanic and Atmospheric Administration (NOAA) has begun planning for the future operational environmental satellite system by conducting the NOAA Satellite Observing System Architecture (NSOSA) study. In support of the NSOSA study, NOAA is exploring how CubeSat technology funded by NASA can be used to demonstrate the ability to measure three-dimensional profiles of global temperature and water vapor. These measurements are critical for the National Weather Service's (NWS) weather prediction mission. NOAA is conducting design studies on Earth Observing Nanosatellites (EON) for microwave (EON-MW) and infrared (EON-IR) soundings, with MIT Lincoln Laboratory and NASA JPL, respectively. The next step is to explore the technology required for a CubeSat mission to address NWS nighttime imagery requirements over the Arctic. The concept is called EON-Day/Night Band (DNB). The DNB is a 0.5-0.9 micron channel currently on the operational Visible Infrared Imaging Radiometer Suite (VIIRS) instrument, which is part of the Suomi-National Polar-orbiting Partnership and Joint Polar Satellite System satellites. NWS has found DNB very useful during the long periods of darkness that occur during the Alaskan cold season. The DNB enables nighttime imagery products of fog, clouds, and sea ice. EON-DNB will leverage experiments carried out by The Aerospace Corporation's CUbesat MULtispectral Observation System (CUMULOS) sensor and other related work. CUMULOS is a DoD-funded demonstration of COTS camera technology integrated as a secondary mission on the JPL Integrated Solar Array and Reflectarray Antenna mission. CUMULOS is demonstrating a staring visible Si CMOS camera. The EON-DNB project will leverage proven, advanced compact visible lens and focal plane camera technologies to meet NWS user needs for nighttime visible imagery. Expanding this technology to an operational demonstration carries several areas of risk that need to be addressed prior to an operational mission. These include, but are not limited to: calibration, swath coverage, resolution, scene gain control, compact fast optical systems, downlink choices, and mission life. NOAA plans to conduct risk reduction efforts similar to those on EON-MW and EON-IR. This paper will explore EON-DNB risks and mitigation options.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2017
- Bibcode:
- 2017AGUFM.A41I2401P
- Keywords:
-
- 0394 Instruments and techniques;
- ATMOSPHERIC COMPOSITION AND STRUCTURE;
- 3360 Remote sensing;
- ATMOSPHERIC PROCESSES;
- 7599 General or miscellaneous;
- SOLAR PHYSICS;
- ASTROPHYSICS;
- AND ASTRONOMY;
- 7999 General or miscellaneous;
- SPACE WEATHER