Direct Quantification of Methane Emissions Across the Supply Chain: Identification of Mitigation Targets
Abstract
Researchers at West Virginia University's Center for Alternative Fuels, Engines, and Emissions have recently participated in a variety of studies targeted at direction quantification of methane emissions from across the natural gas supply chain. These studies included assessing methane emissions from heavy-duty vehicles and their fuel stations, active unconventional well sites - during both development and production, natural gas compression and storage facilities, natural gas engines - both large and small, two- and four-stroke, and low-throughput equipment associated with coal bed methane wells. Engine emissions were sampled using conventional instruments such as Fourier transform infrared spectrometers and heated flame ionization detection analyzers. However, to accurately quantify a wide range of other sources beyond the tailpipe (both leaks and losses), a full flow sampling system was developed, which included an integrated cavity-enhanced absorption spectrometer. Through these direct quantification efforts and analysis major sources of methane emissions were identified. Technological solutions and best practices exist or could be developed to reduce methane emissions by focusing on the "lowest-hanging fruit." For example, engine crankcases from across the supply chain should employ vent mitigation systems to reduce methane and other emissions. An overview of the direct quantification system and various campaign measurements results will be presented along with the identification of other targets for additional mitigation.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2017
- Bibcode:
- 2017AGUFM.A41F2360D
- Keywords:
-
- 0322 Constituent sources and sinks;
- ATMOSPHERIC COMPOSITION AND STRUCTURE;
- 0345 Pollution: urban and regional;
- ATMOSPHERIC COMPOSITION AND STRUCTURE;
- 6304 Benefit-cost analysis;
- POLICY SCIENCES;
- 6309 Decision making under uncertainty;
- POLICY SCIENCES