Sensitivity of boundary layer variables to PBL schemes over the central Tibetan Plateau
Abstract
Planetary Boundary Layer (PBL) parameterization schemes play critical role in numerical weather prediction and research. They describe physical processes associated with the momentum, heat and humidity exchange between land surface and atmosphere. In this study, two non-local (YSU and ACM2) and two local (MYJ and BouLac) planetary boundary layer parameterization schemes in the Weather Research and Forecasting (WRF) model have been tested over the central Tibetan Plateau regarding of their capability to model boundary layer parameters relevant for surface energy exchange. The model performance has been evaluated against measurements from the Third Tibetan Plateau atmospheric scientific experiment (TIPEX-III). Simulated meteorological parameters and turbulence fluxes have been compared with observations through standard statistical measures. Model results show acceptable behavior, but no particular scheme produces best performance for all locations and parameters. All PBL schemes underestimate near surface air temperatures over the Tibetan Plateau. By investigating the surface energy budget components, the results suggest that downward longwave radiation and sensible heat flux are the main factors causing the lower near surface temperature. Because the downward longwave radiation and sensible heat flux are respectively affected by atmosphere moisture and land-atmosphere coupling, improvements in water vapor distribution and land-atmosphere energy exchange is meaningful for better presentation of PBL physical processes over the central Tibetan Plateau.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2017
- Bibcode:
- 2017AGUFM.A41E2341X
- Keywords:
-
- 3310 Clouds and cloud feedbacks;
- ATMOSPHERIC PROCESSES;
- 3322 Land/atmosphere interactions;
- ATMOSPHERIC PROCESSES;
- 3355 Regional modeling;
- ATMOSPHERIC PROCESSES;
- 1840 Hydrometeorology;
- HYDROLOGY