Dependence of present and future European heat waves and cold spells on the location of atmospheric blocking
Abstract
Atmospheric blocking describes stationary anti-cyclones, which weaken or reverse the climatological flow at mid-latitudes. In the northern hemisphere one of the main blocking regions is located over the North Atlantic and Northern Europe. The link between blocking and European temperature extremes, such as heat waves and cold spells, strongly depends on several aspects like season, longitudinal location of the block, and location of the extremes (particularly Northern Europe versus Southern Europe). We use a 50-member ensemble of the Canadian CanESM2 model to investigate historical (1981-2010) and future (2070-2099) blocking cases and their relationship with European temperature extremes. For the historical period the model results are also compared to those from the ERA-Interim reanalysis. Atmospheric blocking is detected on a daily basis in different 30° longitude windows between 60°W and 60°E, using a standard geopotential height-based detection index. Temperature extremes are defined by the daily Heat/Cold Wave Magnitude Index (HWMId/CWMId). The role of cold advection is found particularly important in winter conditions leading to a more than threefold increase in cold wave occurrence during blocking between 60°W and 0°. During blocking over Northern Europe (0° to 60°E) a split relationship is found with cold wave occurrence being strongly increased in Southern Europe, while it is decreased in Northern Europe. Direct, radiative effects dominate in summer, therefore blocking westward of Europe has a weaker effect, while blocking over Northern Europe leads to an increase of heat waves by at least a factor three at the location of the block and a decrease in cold wave occurrence in almost all of Europe. Comparing the historical and future period we find the link between blocking and temperature extremes in Europe to be robust, even though blocking frequency and temperatures are changing.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2017
- Bibcode:
- 2017AGUFM.A41B2269B
- Keywords:
-
- 3305 Climate change and variability;
- ATMOSPHERIC PROCESSES;
- 3319 General circulation;
- ATMOSPHERIC PROCESSES;
- 1616 Climate variability;
- GLOBAL CHANGE;
- 1620 Climate dynamics;
- GLOBAL CHANGE