African dust particles and their impact on the solar energy budget in a Caribbean tropical montane cloud forest
Abstract
To understand the impact of aerosols over the atmospheric energy budget it is essential to identify their size and chemical properties. Atmospheric aerosols emitted, for example, from African dust storms, directly affect climate by altering the dynamics of cloud formation and by reducing the amount of radiation reaching vegetation and the soil surface. In this project, we seek to improve our understanding of the variations in the concentrations of African dust and the role it might play in the energy budget at a Tropical Montane Cloud Forest (TMCF). Concentrations of particulate matter with diameters equal or less than 10µm (PM10) and aerosol optical properties (scattering and absorption) for years 2013 and 2014 were studied in northeastern Puerto Rico at the nature reserve of Cabezas de San Juan (CSJ). At CSJ we used an Integrating Nephelometer to measure light scattering at three wavelengths (450, 550 and 700 nm) and calculated the Scattering Angstrom Exponent (SAE), a measure inversely related to the size of the aerosol particle. We also used the Continuous Light Absorption Photometer (CLAP) to measure the light absorption at three wavelengths (450, 550 and 700). Visibility (meters) and radiation (total solar, UV and IR irradiation) were studied at the TMCF of Pico del Este (PE). PM10 data from stations at Cataño, Guaynabo, and Fajardo were also obtained. The PM10 data were used to study the variation in aerosol concentrations during the year and to study whether there was an effect on the incoming solar radiation. The periods under the influence of African dust were identified using the spectral coefficients measured at CSJ and the air mass back trajectories using the HYSPLIT model. During the summer period, an increase in PM10 concentrations, related to African Dust incursions, was observed. Preliminary results suggest that, for 2013 and 2014, in the presence of high concentrations of PM10 and with low SAE, the total radiation at PE decreased. This could be related to the interactions between solar radiation and aerosol particles and will be discussed in the presentation.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2017
- Bibcode:
- 2017AGUFM.A33F2436R
- Keywords:
-
- 0305 Aerosols and particles;
- ATMOSPHERIC COMPOSITION AND STRUCTURE;
- 0365 Troposphere: composition and chemistry;
- ATMOSPHERIC COMPOSITION AND STRUCTURE;
- 3311 Clouds and aerosols;
- ATMOSPHERIC PROCESSES;
- 1631 Land/atmosphere interactions;
- GLOBAL CHANGE